INDEI TsutomuAssociate Professor

Laboratory of Soft & Wet Matter (Additional Post)
Soft Matter Collaborative Research Unit
Research Theme
Molecular theory for polymer networks under large deformation
Research Keywords

polymer network, softmatter, large deformation, rubber elasticity, double network gel, rheology, microrheology, viscoelasticity, associating polymer, physical gel, gelation

Overview of Research

I am theoretically studying mechanical properties of highly-stretchable polymer gels. Double network gel is a good example of such polymer gels. Based on recent experiments performed by our group, we expect that the force-extension relation of a single polymer chain can be extracted from the stress-strain relation of the highly-stretchable polymer gel formed by these polymers. I am developing theory and analysis method of this technique. This approach is opposite of the conventional method by rubber elasticity theory that estimates stress-strain relation of polymer network by making use the force-extension relation of polymer chains based on statistical mechanics. This study helps understand molecular mechanism of polymer networks subjected to large deformations, and also give some insights into material design.


  • School of Science:
  • Graduate School of Life Science:


Nowadays progress in science and technology is rapid, but basic research remains important. In this lab, a wide range of research topics, from basics to applications, are treated. I myself is interested in basics from theoretical view point.

Representative Publications

Microrheological study of physical gelation in living polymeric networks; T. Narita, T. Indei; Macromolecules, vol.49, pp.4634-4646 (2016).

Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology; T. Indei, J. D. Schieber, A. Cordoba; Phys. Rev. E, vol.85, p.041504: 1-18 (2012).

Treating inertia in passive microbead rheology; T. Indei, J. D. Schieber, A. Cordoba, E. Pilyugina;
Phys. Rev. E, vol.85, p.021504: 1-18 (2012).

Determination of viscoelastic properties by analysis of probe particle motion in molecular simulations; M. Karim, S. C. Kohale, T. Indei, J. D. Schieber, R. Khare; Phys. Rev. E, vol.86, p.051501: 1-6 (2012).

Linear viscoelastic properties of transient networks formed by associating polymers with multiple stickers; T. Indei, J. Takimoto; J. Chem. Phys., vol.133, p.194902: 1-13 (2010).


<Office Hour>
– Time: Anytime during the lecture period
– Place: Frontier-AMLS, 3F
Please contact in advance by E-mail.
E-mail: indei[at]