Laboratory of Soft & Wet Matter

Sparking novel soft material designs by bioinspiration
Research Theme
Creation and application of polymer gels with excellent functions inspired by biological structures
Research Keywords

Soft & wet matter, polymer gel, double network gel, gel more durable than metal, self-healing gel, self-growing gel, bonding gel, thermal toughening gel, low friction gel, super lubricating gel, color changing gel , Sea glue gel, artificial cartilage, cell scaffold gel


Overview of Research and Education

Research Contents: Gels are biotissue-like soft, wet and deformable materials. The aim of our study is to create novel tough and functional gels, to investigate their toughening or functionalizing mechanism, and to apply our novel gels as artificial bio-substituting materials. Our research also aims to generalize the principles of novel tough gel development for other types of soft materials towards application in industrial fields.

Selected topics are listed below:
1) design and fabrication of tough gels and elastomers
2) Investigation of fracture mechanics and dynamics of soft materials
3) Synthesis of gels with low surface friction and investigation of their lubrication mechanism
4) Fabrication of tough and soft composites and investigation of the toughening mechanism
5) Mechanochemistry of gels
6) Fabrication fo soft ceramics through biomineralization
7) Biomaterials and artificial cartilage.

Laboratory of Soft & Wet Matter (pdf)



Frontier Research Center for Advanced Material and Life Science 4F,
Kita 21 Nishi 11, Sapporo
gong* (Please replace*with @ when sending e-mail.)

Representative Publications

Original papers

  1. J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, “Double Network Hydrogels with Extremely High Mechanical Strength”, Advanced Materials, 15, 1155-1158 (2003). (top 1% paper)
  2. Md. A. Haque, G. Kamita, T. Kurokawa, J. P. Gong, “Unidirectional Alignment of Lamellar Bilayer in Hydrogel: One-Dimensional Swelling, Anisotropic Modulus, and Stress/Strain Tunable Structural Color”, Advanced Materials, 22, 5110-5114 (2010).
  3. Md. A. Haque, T. Kurokawa, G. Kamita, J. P. Gong, “Lamellar Bilayers as Reversible Sacrificial Bonds To Toughen Hydrogel: Hysteresis, Self-Recovery, Fatigue Resistance, and Crack Blunting “, Macromolecules, 44, 8916-8924 (2011).
  4. T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima, J. P. Gong “Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity”, Nature Materials, 12, 932-937 (2013). (top 1% paper)
  5. F. Luo, T. L. Sun, T. Nakajima, T. Kurokawa, Y. Zhao, K. Sato, A. B. Ihsan, X. F. Li, H. L. Guo, J. P. Gong, “Oppositely Charged Polyelectrolytes Form Tough, Self-healing and Rebuildable Hydrogels”, Advanced Materials, 27, 2722-2727 (2015). (top 1% paper)
  6. H. J. Zhang, T. L. Sun, A. K. Zhang, Y. Ikura, T. Nakajima, T. Nonoyama, T. Kurokawa, O. Ito, H. Ishitobi, J. P. Gong, “Tough Physical Double-Network Hydrogels Based on Amphiphilic Triblock Copolymers,” Advanced Materials, 28, 4884-4890 (2016). (top 1% paper)
  7. T. Matsuda, T. Nakajima, Y. Fukuda, W. Hong, T. Sakai, T. Kurokawa, U. Chung, J. P. Gong, Yielding Criteria of Double Network Hydrogels, Macromolecules, 49(5), 1865-1872 (2016).
  8. T. L. Sun, F. Luo, W. Hong, K. Cui, Y. Huang, H. Zhang, D. R. King, T. Kurokawa, T. Nakajima, J. P. Gong, Bulk Energy Dissipation Mechanism for the Fracture of Tough and Self-Healing Hydrogels, Macromolecules, 50(7), 2923-2931 (2017).
  9. K. Cui, T. L. Sun, X. Liang, K. Nakajima, Y. N. Ye, L. Chen, T. Kurokawa, J. P. Gong, Multiscale Energy Dissipation Mechanism in Tough and Self-Healing Hydrogels, Physical Review Letters (2018).
  10. P. Rao, T. L. Sun, L. Chen, R. Takahashi, G. Shinohara, H. Guo, D. R. King, T. Kurokawa, J. P. Gong, Tough Hydrogels with Fast, Strong, and Reversible Underwater Adhesion Based on a Multi-Scale Design, Advanced Materials, 30(32), 1801884 (2018).
  11. T. I. Mredha, T. Nonoyama, T. Nakajima, Y. Z. Guo, T. Kurokawa, J. P. Gong, “A Facile Method to Fabricate Anisotropic Hydrogels with Perfectly Aligned Hierarchical Fibrous Structures”, Advanced Materials, 30(9), 1704937 (2018).
  12. R. Takahashi, T. L. Sun, Y. Saruwatari, T. Kurokawa, D. R. King, J. P. Gong, “Creating Stiff, Tough, and Functional Hydrogel Composites with Low Melting Point Alloys”, Advanced Materials, 30, 1706885 (2018).
  13. H. Guo, T. Nakajima, D. Hourdet, A. Marcellan, C. Creton, W. Hong, T. Kurokawa, J. P. Gong, Hydrophobic Hydrogels with Fruit-Like Structure and Functions, Advanced Materials, 31(25), 1900702 (2019)
  14. H. Fan, J. Wang, Z. Tao, J. Huang, P. Rao, T. Kurokawa, J. P. Gong, “Adjacent Cationic-Aromatic Sequences Yield Strong Electrostatic Adhesion of Hydrogels in Seawater”, Nature Communications, 10, 5127 (2019).
  15. T. Matsuda, R. Kawakami, R. Namba, T. Nakajima, J. P. Gong, “Mechanoresponsive Self-growing Hydrogels Inspired by Muscle Training”, Science, 363, 504-508 (2019). (top 1% paper)
  16. X. Li, K. Cui, T. L. Sun, L. Meng, C. Yu, L. Li, C. Creton, T. Kurokawa, J. P. Gong, Mesoscale Bicontinuous Networks in Self-healing Hydrogels Delay Fatigue Fracture, Proc. Natl. Acad. Sci. U.S.A., 117(14), 7606-7612 (2020)
  17. T. Nonoyama, Y. W. Lee, K. Ota, K. Fujioka, W. Hong, J. P. Gong, Instant Thermal Switching from Soft Hydrogel to Rigid Plastics Inspired by Thermophile Proteins, Advanced Materials, 32(4), 1905878 (2020).
  18. W. Cui, D. R. King, Y. Huang, L. Chen, T. L. Sun, Y. Guo, Y. Saruwatari, C.-Y. Hui, T. Kurokawa, J. P. Gong, Fiber‐Reinforced Viscoelastomers Show Extraordinary Crack Resistance That Exceeds Metals, Advanced Materials, 32(31), 1907180 (2020)
  19. T. Matsuda, R. Kawakami, T. Nakajima, J. P. Gong, “Crack Tip Field of a Double-Network Gel: Visualization of Covalent Bond Scission through Mechanoradical Polymerization”, Macromolecules, 53, 5787-8795 (2020).
  20. C. Yu, H. Guo, K. Cui, X. Li, Y. N. Ye, T. Kurokawa, J. P. Gong, “Hydrogels as Dynamic Memory with Forgetting Ability,” Proc. Natl. Acad. Sci. U.S.A., 117(32), 18962-18968 (2020).
  21. Y. N. Ye, K. Cui, W. Hong, X. Li, Ch. Yu, D. Hourdet, T. Nakajima, T. Kurokawa, J. P. Gong, “Molecular Mechanism of Abnormally Large Nonsoftening Deformation in a Tough Hydrogel”, Proc. Natl. Acad. Sci. U.S.A., 118, e2014694118 (2021).
  22. X. Li, K. Cui, T. Kurokawa, Y. N. Ye, T. L. Sun, C. Yu, C. Creton, J. P. Gong, “Effect of Mesoscale Phase Contrast on Fatigue-Delaying Behavior of Self-Healing Hydrogels”, Science Advances, 7, eabe8210 (2021).
  23. Z. Wang, X. Zheng, T. Ouchi, T. B. Kouznetsova, H. K. Beech, S. Av-Ron, T. Matsuda, B. H. Bowser, S. Wang, J. A. Johnson, J. A. Kalow, B. D. Olsen, J. P. Gong, M. Rubinstein, S. L. Craig, “Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands,” Science, 374, 193-196 (2021).
  24. X. Y. Li, J. P. Gong, “Role of Dynamic Bonds on Fatigue Threshold of Tough Hydrogels,” PNAS, 119(20), e2200678119 (2022).
  25. Z. J. Wang, J. Jiang, Q. Mu, S. Maeda, T. Nakajima, J. P. Gong, “Azo-Crosslinked Double-Network Hydrogels Enabling Highly Efficient Mechanoradical Generation,” J. Am. Chem. Soc. 144, 7, 3154–3161(2022).
  26. Q.-F. Mu, K.-P. Cui, Z. J. Wang, T. Matsuda, W. Cui, H. Kato, S. Namiki, T. Yamazaki, M. Frauenlob, T. Nonoyama, M. Tsuda, S. Tanaka, T. Nakajima, J. P. Gong, “Force-triggered rapid microstructure growth on hydrogel surface for on-demand functions,” Nature Communications, 13, Article number: 6213 (2022).
  27. R. Kiyama, M. Yoshida, T. Nonoyama, T. Sedlačík, H. Jinnai, T. Kurokawa, T. Nakajima, J. P. Gong, “Nanoscale TEM Imaging of Hydrogel Network Architecture,” Advanced Materials, 35(1), 2208902 (2023).
  28. Gumi Wei, Yumeko Kudo, Takahiro Matsuda, Zhi Jian Wang, Qi Feng Mu, Daniel R. King, Tasuku Nakajima, Jian Ping Gong, “Sustainable mechanochemical growth of double-network hydrogels supported by vascular-like perfusion”, Materials Horizons, 2023,10, 4882-4891(2023).
  29. Xueyu Li, Kunpeng Cui, Yong Zheng, Ya Nan Ye, Chengtao Yu, Wenqi Yang, Tasuku Nakajima, Jian Ping Gong, “Role of hierarchy structure on the mechanical adaptation of self-healing hydrogels under cyclic stretching”, Science Advances, 9, 51 (2023).
  30. Yiran Li, Bin Xue, Jiahui Yang, Julong Jiang, Jing Liu, Yanyan Zhou, Junsheng Zhang, Mengjiao Wu, Yuan Yuan, Zhenshu Zhu, Zhi Jian Wang, Yulan Chen, Yu Harabuchi, Tasuku Nakajima, Wei Wang, Satoshi Maeda, Jian Ping Gong, Yi Cao, “Azobenzene as a photoswitchable mechanophore,” Nature Chemistry, 16, 446–455 (2023).

Review papers

  1. J. P. Gong, “Why are double network hydrogels so tough?” Soft Matter, 6, 2583-2590 (2010). (top 1% paper)
  2. Md. A. Haque, T. Kurokawa, J. P. Gong, “Super tough double network hydrogels and their application as biomaterials”, Polymer, 53(9), 1805-1822 (2012). (top 1% paper)
  3. J. P. Gong, “Materials both Tough and Soft”, Science, 344, 161-162 (2014). (top 1% paper)
  4. H. L. Fan, J. P. Gong, “Fabrication of Bioinspired Hydrogels: Challenges and Opportunities,” Macromolecules, 53(8), 2769-2782 (2020). (top 1% paper)
  5. H. L. Fan, J. P. Gong, “Bioinspired Underwater Adhesives”, Advanced Materials, 33(44), 2102983 (2021). (top 1% paper)
  6. R. Long, C.-Y. Hui, J. P. Gong, E. Bouchbinder, “The Fracture of Highly Deformable Soft Materials: A Tale of Two Length Scales”, Annual Review of Condensed Matter Physics, 12(1), 71-94 (2021). (top 1% paper)