INDEI TsutomuAssociate Professor
- Laboratory
- Laboratory of Soft & Wet Matter (Additional Post)
Soft Matter Collaborative Research Unit - Research Theme
- Molecular theory for polymer networks under large deformation / Microrheology of soft materials / Molecular theory for polymer rheology
- Research Keywords
Polymer, softmatter, gel, rheology, mechanical property, molecular model, statistical physics, transport phenomena, double network, rubber elasticity, microrheology, viscoelasticity, associating polymer, physical gel, gelation
Overview of Research
I am theoretically studying mechanical properties of highly-stretchable polymer gels. Double network gel is a good example of such polymer gels. Based on recent experiments performed by our group, we expect that the force-extension relation of a single polymer chain can be extracted from the stress-strain relation of the highly-stretchable polymer gel formed by these polymers. I am developing theory and analysis method of this technique. This approach is opposite of the conventional method by rubber elasticity theory that estimates stress-strain relation of polymer network by making use the force-extension relation of polymer chains based on statistical mechanics. This study helps understand molecular mechanism of polymer networks subjected to large deformations, and also give some insights into material design. I am also theoretically studying rheology and mechanical property of polymeric soft materials by developing molecular model and phenomenological model and apply them to experimental analysis. Furthermore, I am studying microrheology that relates viscoelasticy of soft material and diffusion of Brownian particles dispersed in the soft material.
Charge
- School of Science:
- Graduate School of Life Science:
Representative Publications
Theory and practical application of passive microrheology, – Diffusing-wave spectroscopy microrheology; T. Indei, T. Narita; Oleoscience, vol.23, pp.9-15 (2023).
Microrheological study of single chain dynamics in semidilute entangled flexible polymer solutions: Crossover from Rouse to Zimm modes; T. Indei, T. Narita; J. Rheol. vol.66, pp.1165–1179 (2022).
Microrheological study of physical gelation in living polymeric networks; T. Narita, T. Indei; Macromolecules, vol.49, pp.4634-4646 (2016).
Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology; T. Indei, J. D. Schieber, A. Cordoba; Phys. Rev. E, vol.85, p.041504: 1-18 (2012).
Treating inertia in passive microbead rheology; T. Indei, J. D. Schieber, A. Cordoba, E. Pilyugina; Phys. Rev. E, vol.85, p.021504: 1-18 (2012).
Determination of viscoelastic properties by analysis of probe particle motion in molecular simulations; M. Karim, S. C. Kohale, T. Indei, J. D. Schieber, R. Khare; Phys. Rev. E, vol.86, p.051501: 1-6 (2012).
Linear viscoelastic properties of transient networks formed by associating polymers with multiple stickers; T. Indei, J. Takimoto; J. Chem. Phys., vol.133, p.194902: 1-13 (2010).
Note
<Office Hour>
– Time: Anytime during the lecture period
– Place: Frontier-AMLS, 2F
Please contact in advance by E-mail.
E-mail: indei[at]sci.hokudai.ac.jp
Affiliation
- Faculty of Advanced Life Science, Department of Advanced Transdisciplinary Sciences, Soft & Wet Matter Science
- Frontier Research Center for Advanced Material and Life Science, Soft Matter Collaborative Research Unit
- Frontier Research Center for Advanced Material and Life Science, Global Collaboration Unit, Soft Matter Collaborative Research Unit